Radial symmetry results for fractional Laplacian systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf’s Lemma and Constrained Radial Symmetry for the Fractional Laplacian

In this paper we prove Hopf’s boundary point lemma for the fractional Laplacian. With respect to the classical formulation, in the non-local framework the normal derivative of the involved function u at z ∈ ∂Ω is replaced with the limit of the ratio u(x)/(δR(x)) , where δR(x) = dist(x, ∂BR) and BR ⊂ Ω is a ball such that z ∈ ∂BR. More precisely, we show that lim inf B∋x→z u(x) (δR(x)) > 0 . Als...

متن کامل

Uniqueness of Radial Solutions for the Fractional Laplacian

We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−∆) with s ∈ (0, 1) for any space dimensions N > 1. By extending a monotonicity formula found by Cabré and Sire [9], we show that the linear equation (−∆)u+ V u = 0 in R has at most one radial and bounded solution vanishing at infinity, provided that the potential V is ...

متن کامل

BIFURCATION ALONG CURVES FOR THE p-LAPLACIAN WITH RADIAL SYMMETRY

We study the global structure of the set of radial solutions of a nonlinear Dirichlet eigenvalue problem involving the p-Laplacian with p > 2, in the unit ball of RN , N > 1. We show that all non-trivial radial solutions lie on smooth curves of respectively positive and negative solutions, bifurcating from the first eigenvalue of a weighted p-linear problem. Our approach involves a local bifurc...

متن کامل

Positive radial solutions for p-Laplacian systems

The paper deals with the existence of positive radial solutions for the p-Laplacian system div(|∇ui| ∇ui) + f (u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, x ∈ R . Here f , i = 1, . . . , n, are continuous and nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1|ui|, f i 0 = lim‖u‖→0 f(u) ‖u‖p−1 , f i ∞ = lim‖u‖→∞ f(u) ‖u‖p−1 , i = 1, . . . , n, f = (f1...

متن کامل

Fractional Laplacian: Pohozaev Identity and Nonexistence Results

In this note we present the Pohozaev identity for the fractional Laplacian. As a consequence of this identity, we prove the nonexistence of nontrivial bounded solutions to semilinear problems with supercritical nonlinearities in starshaped domains. Résumé. Dans cette note, nous présentons l’identité de Pohozaev pour le Laplacien fractionnaire. Comme conséquence de cette identité, nous prouvons ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis

سال: 2016

ISSN: 0362-546X

DOI: 10.1016/j.na.2016.08.022