Radial symmetry results for fractional Laplacian systems
نویسندگان
چکیده
منابع مشابه
Hopf’s Lemma and Constrained Radial Symmetry for the Fractional Laplacian
In this paper we prove Hopf’s boundary point lemma for the fractional Laplacian. With respect to the classical formulation, in the non-local framework the normal derivative of the involved function u at z ∈ ∂Ω is replaced with the limit of the ratio u(x)/(δR(x)) , where δR(x) = dist(x, ∂BR) and BR ⊂ Ω is a ball such that z ∈ ∂BR. More precisely, we show that lim inf B∋x→z u(x) (δR(x)) > 0 . Als...
متن کاملUniqueness of Radial Solutions for the Fractional Laplacian
We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−∆) with s ∈ (0, 1) for any space dimensions N > 1. By extending a monotonicity formula found by Cabré and Sire [9], we show that the linear equation (−∆)u+ V u = 0 in R has at most one radial and bounded solution vanishing at infinity, provided that the potential V is ...
متن کاملBIFURCATION ALONG CURVES FOR THE p-LAPLACIAN WITH RADIAL SYMMETRY
We study the global structure of the set of radial solutions of a nonlinear Dirichlet eigenvalue problem involving the p-Laplacian with p > 2, in the unit ball of RN , N > 1. We show that all non-trivial radial solutions lie on smooth curves of respectively positive and negative solutions, bifurcating from the first eigenvalue of a weighted p-linear problem. Our approach involves a local bifurc...
متن کاملPositive radial solutions for p-Laplacian systems
The paper deals with the existence of positive radial solutions for the p-Laplacian system div(|∇ui| ∇ui) + f (u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, x ∈ R . Here f , i = 1, . . . , n, are continuous and nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1|ui|, f i 0 = lim‖u‖→0 f(u) ‖u‖p−1 , f i ∞ = lim‖u‖→∞ f(u) ‖u‖p−1 , i = 1, . . . , n, f = (f1...
متن کاملFractional Laplacian: Pohozaev Identity and Nonexistence Results
In this note we present the Pohozaev identity for the fractional Laplacian. As a consequence of this identity, we prove the nonexistence of nontrivial bounded solutions to semilinear problems with supercritical nonlinearities in starshaped domains. Résumé. Dans cette note, nous présentons l’identité de Pohozaev pour le Laplacien fractionnaire. Comme conséquence de cette identité, nous prouvons ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis
سال: 2016
ISSN: 0362-546X
DOI: 10.1016/j.na.2016.08.022